Home > Mathematica > More Tupperware

## More Tupperware

This is post is motivated by a question on Mathematica Stackexchange and the interesting link posted in the question. My previous post had subtle errors. This allowed me to play with the higher resolution self referential formula:

``` g[x_, y_] := Boole[Mod[Floor[Floor[y/61] 2^(-61 x - Mod[y, 61])], 2] == 1] w[nu_] := ArrayPlot[Table[g[j, k], {k, nu + 60, nu, -1}, {j, 0, 375}]] btupf[s_] := Module[{i, m, r}, i = Rasterize[s, ImageSize -> {376, 61}]; m = Map[Boole[Max@# < 1] &, ImageData[i], {2}]; r = 61 FromDigits[Flatten[Reverse@Transpose[m]], 2]; ArrayPlot[Table[g[j, k], {k, r + 60, r, -1}, {j, 0, 375}]]] ```

```btupn[s_] := Module[{i, m, r}, i = Rasterize[s, ImageSize -> {376, 61}]; m = Map[Boole[Max@# < 1] &, ImageData[i], {2}]; r = 61 FromDigits[Flatten[Reverse@Transpose[m]], 2]] ```
Here `g` is the function, ```w  ```plots a given number, `btupf` allows you to put in text, convert to number and array plot, `btupn` gives you the number.

So ` w[nn]` where `nn` is this number yields:

Categories: Mathematica