## More Tupperware

This is post is motivated by a question on Mathematica Stackexchange and the interesting link posted in the question. My previous post had subtle errors. This allowed me to play with the higher resolution self referential formula:

g[x_, y_] :=

Boole[Mod[Floor[Floor[y/61] 2^(-61 x - Mod[y, 61])], 2] == 1]

w[nu_] := ArrayPlot[Table[g[j, k], {k, nu + 60, nu, -1}, {j, 0, 375}]]

btupf[s_] := Module[{i, m, r},

i = Rasterize[s, ImageSize -> {376, 61}];

m = Map[Boole[Max@# < 1] &, ImageData[i], {2}]; r = 61 FromDigits[Flatten[Reverse@Transpose[m]], 2]; ArrayPlot[Table[g[j, k], {k, r + 60, r, -1}, {j, 0, 375}]]]

`btupn[s_] := Module[{i, m, r}, i = Rasterize[s, ImageSize -> {376, 61}];`

m = Map[Boole[Max@# < 1] &, ImageData[i], {2}];

r = 61 FromDigits[Flatten[Reverse@Transpose[m]], 2]]

Here `g`

is the function, `w `

plots a given number,

`btupf`

allows you to put in text, convert to number and array plot, `btupn`

gives you the number.

So ` w[nn]`

where `nn`

is this number yields: