Home > books, Mathematica, Mathematics > Singularity is almost invariably a clue

Singularity is almost invariably a clue

The post title is a quote from “The Adventures of Sherlock Holmes: The Boscombe Valley Mystery” (1892). I am working through the wonderful book:  Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory by Professors Bender and Orszag. I will write about this book in due course.

The book chapters start with quotes from Sherlock Holmes. In the chapter on local analysis of non-linear differential equations there are  two examples (nice separable equations) illustrating fixed and spontaneous singularities.

y'=\frac{y}{1-x} (linear differential equation fixed singularity at x=1)

y'=y^2 (non-linear differential equation with spontaneous or movable singularity)

The solutions for the initial conditions y(0)=a are respectively:

y(x)=\frac{a}{1-x}

y(x)=\frac{a}{1-a x}

In Spontaneous and Fixed Singularities I graphically illustrate this.

Professor Bender’s video lectures on Mathematical Physics are excellent and with the book have made the veil of  perturbation and asymptotic theory start to fall (for me). Here is the link to the first lecture…you can follow the trail on YouTube or use Google to find the others. I have not put these links as they have not uniformly worked on my machine.

Advertisements
Categories: books, Mathematica, Mathematics
  1. July 16, 2012 at 3:12 pm
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: