Home > Mathematics > Just a wave

Just a wave

In this post I continue exploring Maxwell’s insight regarding the nature of light as an electromagnetic wave.

Consider the solution to the wave equation:

\mathbf{E}=\mathbf{E_0}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}

\mathbf{k} is the direction of propagation of the wave and length equal to the wavenumber, \omega is the angular frequency of the light.

\nabla\cdot\mathbf{E}= \frac{\partial}{\partial x_j}E_{0j}e^{i(k_mx_m-\omega t)}= i k_jE_{0j}e^{i(k_m x_m-\omega t)}= i\mathbf{k}\cdot\mathbf{E}




(\nabla\times\mathbf{E})_m=\epsilon_{mnp}\frac{\partial}{\partial x_n}E_{0p}e^{i(k_sx_s-\omega t)}=\epsilon_{mnp}i k_nE_{0p}e^{i(k_sx_s-\omega t)}





Now looking at Maxwell’s equations in vacuo:

\nabla\cdot\mathbf{E}=\nabla\cdot\mathbf{B} =i\mathbf{k}\cdot\mathbf{E}=i\mathbf{k}\cdot\mathbf{B}=0

Hence the direction of propagation is orthogonal to both the direction of the electric field and magnetic field.


\nabla\times\mathbf{E} =-\frac{\partial\mathbf{B}}{\partial t} = i\omega\mathbf{B}


\mathbf{B} =\frac{\mathbf{k}\times\mathbf{E}}{\omega}

Note \frac{\omega}{|k|} =c,

|\mathbf{B}|= |\mathbf{E}|/c


\mathbf{E}\cdot\mathbf{B} = \mathbf{E}\cdot(\mathbf{k}\times\mathbf{E}) =0

Hence, the electric and magnetic field are orthogonal.

Insights from some symbolic manipulations…

Categories: Mathematics
  1. No comments yet.
  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: